Archivo de la etiqueta: Marte

Revelan el interior de Marte

Las primeras observaciones sísmicas directas desde el módulo de aterrizaje InSight de la NASA, analizadas en tres estudios, ofrecen pistas sobre la estructura interna de Marte.

A través de estos estudios, que se han publicado recientemente en la revista académica Science, los investigadores informan de los hallazgos preliminares de la misión InSight y comienzan a cartografiar, por primera vez, el interior de un planeta distinto de la Tierra.

El estudio de las capas interiores de un planeta -su corteza, manto y núcleo- puede revelar información clave sobre su formación y evolución, así como descubrir cualquier actividad geomagnética y tectónica que pueda albergar. Estas regiones interiores profundas se pueden identificar mediante sondas que miden las ondas que viajan a través del cuerpo del planeta como consecuencia de eventos sísmicos como un terremoto. Estos métodos han sido fundamentales para estudiar las características del interior de la Tierra.

A principios de 2019, el módulo de aterrizaje marciano de la NASA InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, o exploración interior mediante investigaciones sísmicas, geodesia y transporte de calor) comenzó a detectar y registrar terremotos desde su posición en la superficie de Marte, entre ellos varios terremotos subcorticales que se asemejan a eventos tectónicos en la Tierra.

Brigitte Knapmeyer-Endrun y sus colegas utilizaron información procedente de terremotos marcianos y ruido sísmico ambiental para obtener imágenes de la estructura de la corteza marciana situada bajo el punto de aterrizaje de InSight, encontrando evidencia de una corteza dividida en múltiples capas con dos o tres interfaces. Extrapolando estos datos a todo el planeta, Knapmeyer-Endrun y sus colegas muestran cómo el espesor promedio de la corteza de Marte se encuentra entre 24 y 72 kilómetros.

Por su parte, el equipo de Amir Khan empleó ondas sísmicas directas y reflejadas en la superficie causadas por ocho terremotos de baja frecuencia para sondear a mayor profundidad y revelar la estructura del manto marciano a una profundidad de casi 800 kilómetros. Sus hallazgos sugieren que a unos 500 kilómetros por debajo de la superficie se encuentra una litosfera gruesa que, como en el caso de la Tierra, probablemente presenta una capa de baja velocidad debajo de ella. Según Khan y sus colegas, es probable que la capa de la corteza marciana esté altamente enriquecida con elementos radiactivos que producen calor, calentando esta región a expensas del interior del planeta.

A un nivel todavía mayor de profundidad, Simon Stähler y sus colegas utilizaron las débiles señales sísmicas reflejadas en el límite entre el núcleo y el manto marciano para investigar el núcleo. Descubrieron que Marte presenta un núcleo de metal líquido relativamente grande, con un radio de casi 1830 kilómetros, que comienza aproximadamente a mitad de camino entre la superficie y el centro del planeta, lo que sugiere que el manto del planeta consta de una sola capa rocosa, en lugar de dos, como es el caso de la Tierra. Según Stähler y sus colegas, los hallazgos indican que el núcleo de hierro-níquel es menos denso de lo que se pensaba anteriormente y está enriquecido con elementos más ligeros.

Perseverance, en los preparativos finales para la recolección de la primera muestra de roca marciana

Madrid. La NASA realiza los preparativos finales para que su robot Perseverance recolecte su primera muestra de roca marciana, que futuras misiones planeadas transportarán a la Tierra.

El geólogo robótico sobre ruedas está en busca de un objetivo científicamente interesante en una parte del cráter Jezero llamada Cratered Floor Fractured Rough (suelo con cráter fracturado y rugoso).

Se espera que este importante hito de la misión comience en las próximas dos semanas. Perseverance aterrizó en Jezero el 18 de febrero, y la NASA comenzó la fase científica de la labor del robot el primero de junio, explorando una zona de 4 kilómetros cuadrados de suelo del cráter que puede contener las capas más profundas y antiguas de afloramientos rocosos en ese sitio, informó la agencia espacial estadunidense.

Perseverance tardará alrededor de 11 días en completar su primer muestreo, ya que debe recibir instrucciones desde cientos de millones de kilómetros de distancia mientras depende del mecanismo más complejo y capaz, así como el más limpio, que se haya enviado al espacio: el Sistema de Almacenamiento en Caché.

Para la secuencia de la técnica, el robot comenzará colocando todo lo necesario para el muestreo al alcance de su brazo robótico de 2 metros de largo. Luego realizará un estudio de imágenes, para que el equipo científico de la NASA pueda determinar la ubicación exacta, a fin de tomar la primera muestra y un sitio objetivo separado en la misma área para la ciencia de proximidad.

Datos valiosos

“La idea es obtener datos valiosos sobre la roca que estamos a punto de muestrear encontrando su gemelo geológico y realizando análisis detallados in situ”, señaló la colíder de la campaña científica Vivian Sun, del Laboratorio de Propulsión a Chorro de la NASA.

En el doble geológico, primero usamos una broca abrasiva para raspar las capas superiores de roca y polvo con la finalidad de exponer superficies frescas y no erosionadas, soplarlo con nuestra herramienta de eliminación de polvo de gas y luego acercarnos con nuestra torreta de instrumentos científicos de proximidad montados Sherloc, PIXL y Watson.

Estos tres instrumentos proporcionarán análisis minerales y químicos del objetivo erosionado. Los instrumentos SuperCam y Mastcam-Z, ambos ubicados en el mástil del Perseverance, también participarán. Mientras el primero dispara su láser a la superficie desgastada, para realizar el análisis espectral y recolectar otros datos, el segundo captará imágenes de alta resolución.

Trabajando juntos, estos cinco instrumentos permitirán un análisis sin precedente de materiales geológicos en el lugar de trabajo.

Una vez que nuestra labor previa a la extracción de muestras esté completa, limitaremos las tareas del robot a sólo un día marciano, sostuvo Sun. Esto permitirá que cargue completamente la batería para la actividad del día siguiente.

El trabajo comienza con el brazo de manipulación de muestras dentro del conjunto de almacenamiento en caché adaptativo que recupera un tubo, lo calienta y luego lo inserta en una broca de extracción de muestras. Un dispositivo llamado carrusel de brocas transporta el tubo y la broca a un taladro de percusión giratorio en el brazo robótico de Perseverance, que luego perforará el gemelogeológico intacto de la roca estudiada en el sol anterior, llenando el tubo con una muestra de núcleo aproximadamente del tamaño de un trozo de tiza.

Más maniobras

Luego, el brazo de Perseverance moverá la combinación de tubo y broca nuevamente al carrusel de bits, que la transferirá de nuevo al sistema de almacenamiento en caché adaptativo, donde se medirá el volumen de la muestra, se fotografiará, sellará herméticamente y se almacenará. La próxima vez que se vea el contenido, estará en una instalación de sala limpia en la Tierra, para su análisis, utilizando instrumentos científicos demasiado grandes para enviarlos a Marte.

“No todas las muestras que Perseverance recolecte se utilizarán en la búsqueda de vida antigua, y no esperamos que esta primera muestra proporcione una prueba definitiva de una forma u otra”, destacó el científico del proyecto Perseverance Ken Farley, de Caltech.

Si bien las rocas ubicadas en esta unidad geológica no son excelentes cápsulas del tiempo para los orgánicos, creemos que han existido desde la formación del cráter Jezero y son increíblemente valiosas para llenar los vacíos en nuestra comprensión de esta región, cosas que necesitaremos desesperadamente saber si descubrimos que alguna vez hubo vida en Marte, concluyó.

Proponen un método de análisis rápido para encontrar huellas biológicas en Marte

Un equipo de investigación de la Universidad de Málaga en España ha validado el uso de un sistema para detectar compuestos orgánicos en las rocas del Planeta Rojo. En concreto, proponen el uso de un instrumento llamado LIBS incorporado en el robot Perseverance ampliando sus funciones. Si ahora detecta y analiza materia inorgánica en la superficie marciana, además, señalaría restos orgánicos, con lo que se identificaría la presencia de vida en algún momento de la historia marciana.

El rover robótico Perseverance se lanzó al espacio en julio de 2020 con el objetivo de recolectar y analizar muestras de la superficie de Marte utilizando un conjunto de tecnologías de análisis entre las que se incluye LIBS. En el estudio, los expertos confirman que este modelo de análisis de materiales puede ser también una buena opción para confirmar la presencia de huellas biológicas en el planeta vecino de una manera rápida y eficaz.

Además, el Perseverance analiza rocas que se encuentran hasta a 7 metros de distancia, lo que multiplica las posibilidades en la recogida de muestras que puedan estar inaccesibles. “Concretamente, el sistema consiste en la emisión de un haz de luz pulsada sobre cualquier superficie de manera que la temperatura evapora el material que contiene y queda disponible para conocer su composición atómica con gran precisión”, indica a la Fundación Descubre el investigador José Javier Laserna, de la Universidad de Málaga y coautor del estudio.

La composición química de las rocas es siempre similar. Lo que distingue a un tipo de otra es el porcentaje de los elementos que contienen, la estructura y su organización atómica. Si en algún momento de su formación o erosión se hubiera incluido en ellas algún material orgánico, habría dejado una huella. Esta biofirma es lo que los expertos pretenden rescatar eliminando la posibilidad de obtener resultados confusos por la interacción de los compuestos atmosféricos que podrían intervenir en la recogida de las muestras mediante LIBS.

Así, los expertos proponen este sistema como una opción válida en la búsqueda de restos de carbono, hidrógeno y nitrógeno en sus múltiples fórmulas en la superficie de Marte. Concretamente, para la detección de radicales como el cianógeno (CN), el carbono dímero (C2) o los aminos (NH). Si se encontrara en Marte alguna de estas moléculas significaría que existieron compuestos nitrogenados, aromáticos o aminas, moléculas orgánicas que determinarían la presencia en el pasado de alguna forma de vida.

in embargo, reconocer residuos orgánicos en materiales mediante la técnica LIBS puede verse afectado por diversas circunstancias. Por ejemplo, el dióxido de carbono (CO2) presente en la atmósfera marciana interacciona con los gases emitidos de los materiales en el momento de la toma de la muestra por LIBS, lo que puede provocar confusión en los resultados.

Aún así, los expertos han demostrado en un espacio simulado en laboratorio la validez del sistema en la identificación de biofirmas en los materiales a pesar de la complejidad de las reacciones de la formación, fragmentación y evolución.

Una de las complicaciones que puede darse en el análisis de muestras es que se obtengan moléculas de carbono, pero que estén provocadas por agentes externos, como la propia atmósfera de Marte, rica en dióxido de carbono. Sin embargo, los expertos han demostrado que el perjuicio de los gases de la superficie es solo marginal y que la toma de huellas de compuestos orgánicos es fiable en la información que ofrece LIBS.

Para confirmar esto, el estudio probó LIBS con diversos gases de fondo, concretamente con la combinación de gases que conforman la atmósfera terrestre, gas CO2 puro y la combinación de gases que conforman la atmósfera marciana, actuando sobre distintos compuestos orgánicos. En la mayoría de los casos, los componentes atmosféricos y el carbono inorgánico están dentro de los límites para obtener una señal medible.

También observaron que el carbono atmosférico puede reaccionar con nitrógeno orgánico, lo que confirma la posibilidad de identificar la presencia de un compuesto biológico que contenga nitrógeno.

Aunque LIBS no es el método analítico idóneo para la identificación de moléculas orgánicas, en este caso se propone como el primero de los pasos para descubrirlas en Marte. El terreno tan accidentado del planeta hace que el Perseverance no tenga acceso a ciertos objetivos que puedan ser de interés. Sin embargo, LIBS permite, además de la obtención de datos de manera inmediata, la toma de muestras a una distancia de hasta 7 metros.

Si LIBS detecta la presencia de material orgánico habría que seguir profundizando en la composición con otros métodos más precisos como la espectroscopía infrarroja, con la que se obtendría un mapa más detallado de la muestra, y así concluir si realmente Marte tuvo vida o no en algún momento desde su formación.

El estudio se titula “Investigation on the origin of molecular emissions in laser-induced breakdown spectroscopy under Mars-like atmospheric conditions of isotope-labeled compounds of interest in astrobiology”. Y se ha publicado en la revista académica Spectrochimica Acta Part B: Atomic Spectroscopy. (Fuente: Fundación Descubre)